

Zertifikat

Zertifiziertes Referenzmaterial (ZRM)

TAZ-012 30CrNiMo8 / 1.6580

Zertifizierte Werte

Element	Massenanteil 1)	Unsicherheit 2)	Einheit 3)	Element	Massenanteil 1)	Unsicherheit 2)	Einheit 3)
С	0,294	0,012	%	Al	0,0287	0,0016	%
Si	0,227	0,005	%	Со	0,0170	0,0008	%
Mn	0,553	0,006	%	Cu	0,110	0,007	%
Р	0,0108	0,0010	%	V	0,0208	0,0008	%
Cr	1,922	0,024	%	S	39	7	μg/g
Мо	0,329	0,010	%	Ti	26	5	μg/g
Ni	1,887	0,021	%	Sn	71	6	μg/g

¹⁾ Ungewichtete Mittelwerte der akzeptierten Messreihenmittelwerte, wobei die Datensätze entweder von unterschiedlichen Laboratorien stammen oder mit unterschiedlichen Methoden ermittelt wurden.

Dieses Zertifikat ist gültig bis 09.2073

Werte zur Information 4)

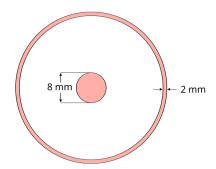
Element	Massenanteil 1)	Einheit
W	80	μg/g
As	93	μg/g
Ν	65	μg/g

⁴⁾ Die Werte wurden nicht zertifiziert, sondern nur zur Information angegeben, wenn die Anzahl der akzeptierten Datensätze zu klein (< 5), die Unsicherheit aus dem Zertifizierungsringversuch deutlich größer als erwartet war oder es Hinweise auf Inhomogenitäten gab.

²⁾ Erweiterte Unsicherheit U_{CRM} entsprechend einem Vertrauensniveau von 95 %.

³⁾ Obwohl in der Industrie weitgehend akzeptiert, ist der "Massenanteil in %" weder eine SI- noch eine IUPAC-gestützte Einheit. Die Multiplikation der in % angegebenen, zertifizierten Werte und Unsicherheiten mit 10⁴ ergibt den Wert in μg/g.

Beschreibung des Materials


Das Referenzmaterial ist erhältlich in Form von Zylindern mit einem Durchmesser von 45 mm und einer Höhe von 40 mm.

Empfohlener Einsatzbereich

Das Referenzmaterial ist zur Erstellung und Überprüfung von Kalibrationen für die Röntgenfluoreszenz-, Glimmentladungsund Funkenemissions-Spektralanalyse von Proben ähnlicher Zusammensetzung vorgesehen.

Handhabung

Da es signifikante Seigerungen in der Mitte von vergossenen Scheibenproben geben kann, sollte eine Fläche von 8 mm Durchmesser in der Mitte der Probe nicht benutzt werden. Die äußere Fläche bis zu einer Tiefe von 2 mm soll ebenfalls bei der Analyse ausgespart werden. Die zu analysierende Oberfläche der Probe soll nicht im Anlieferzustand, sondern erst nach Präparation der Oberfläche verwendet werden, damit mögliche Schutzschichten entfernt werden.

Transport und Lagerung

Das Material ist in trockener und sauberer Umgebung bei Raumtemperatur zu lagern. Der Transport hat unter normalen Umgebungsbedingungen zu erfolgen. Die Probe bleibt stabil, solange sie nicht extremer Hitze ausgesetzt wird (z.B. während der Bearbeitung der Oberfläche).

Homogenität

Eine Homogenitätsuntersuchung wurde durchgeführt, um die Chargeninhomogenität zu ermitteln.

Erweiterte Gesamtunsicherheit

Die Unsicherheitsabschätzung berücksichtigt die Ergebnisse der Homogenitätsuntersuchung und der Charakterisierungsstudie. u_{hom} setzt sich aus den Beiträgen der Homogenitätsuntersuchung zwischen den Einheiten u_{bb} und innerhalb der Einheiten u_{wb} zusammen. u_{char} ist die Standardunsicherheit der Charakterisierungsstudie, die sich aus der Standardabweichung s_{char} und der Anzahl n der akzeptierten Labormittelwerte ergibt. u_{CRM} ist die kombinierte Unsicherheit der Homogenitätsuntersuchung und der Charakterisierungsstudie. Der Erweiterungsfaktor $t_{(n-1)}$ ist die zweiseitige Quantile der Student t-Verteilung und U_{CRM} ist die erweiterte Gesamtunsicherheit. Die berichteten Unsicherheiten sowie die zertifizierten Werte wurden nach DIN 1333:1992 gerundet.

$$u_{\text{hom}} = \sqrt{u_{\text{bb}}^2 + u_{\text{wb}}^2} \qquad \qquad u_{\text{char}} = \frac{s_{\text{char}}}{\sqrt{n}} \qquad \qquad u_{\text{CRM}} = \sqrt{u_{\text{char}}^2 + u_{\text{hom}}^2} \qquad \qquad U_{\text{CRM}} = t_{(n-1)} \cdot u_{\text{CRM}}$$

Beteiligte Laboratorien	Akkreditierung			
FEM - Forschungsinstitut Edelmetalle + Metallchemie, Schwäbisch Gmünd, DE	DIN EN ISO/IEC 17025			
TAZ GmbH, Aichach, DE	DIN EN ISO/IEC 17025			
Thyssenkrupp Steel Europe AG, Duisburg, DE	DIN EN ISO/IEC 17025			
act - analytical consulting tilleman, Kalkar, DE	-			
ChemiLytics GmbH & Co. KG, Goslar, DE	DIN EN ISO/IEC 17025			
Spectro Analytical Instruments GmbH, Kleve, DE	ISO 9001:2015			

TAZ-012 Seite 2 von 6

TAZ GMBH

Mittelwerte der akzeptierten Datensätze

	С	Si	Mn	Р	S	Cr	Мо	Ni	Al	Co	Cu	Ti	V	Sn	W
Lfd. Nr.	%	%	%	%	μg/g	%	%	%	%	%	%	μg/g	%	μg/g	μg/g
1	0,285		0,544	0,0100	31	1,895	0,321	1,855	0,0268	0,0153	0,102	19		63	61
2	0,290	0,221	0,547	0,0100	32	1,897	0,322	1,859	0,0270	0,0160	0,104	19		65	71
3	0,292	0,222	0,547	0,0100	33	1,916	0,324	1,882	0,0285	0,0169	0,108	23	0,0193	65	74
4	0,292	0,224	0,549	0,0103	37	1,917	0,326	1,886	0,0289	0,0170	0,108	25	0,0194	69	77
5	0,293	0,224	0,553	0,0109	38	1,922	0,328	1,891	0,0295	0,0172	0,109	27	0,0205	71	85
6	0,295	0,228	0,557	0,0110	39	1,926	0,332	1,894	0,0300	0,0172	0,110	28	0,0207	75	88
7	0,295	0,230	0,557	0,0112	41	1,929	0,333	1,899	0,0304	0,0178	0,112	28	0,0209	75	101
8	0,295	0,232	0,557	0,0115	43	1,930	0,334	1,901		0,0184	0,112	29	0,0210	75	
9	0,301	0,232	0,563	0,0119	45	1,961	0,341	1,921			0,113	36	0,0214	83	
10	0,303				47						0,113		0,0218		
11											0,114		0,0219		
12											0,121				
М	0,294	0,227	0,553	0,0108	39	1,922	0,329	1,887	0,0287	0,0170	0,110	26	0,0208	71	80
SM	0,006	0,005	0,007	0,0008	6	0,020	0,007	0,021	0,0015	0,0010	0,006	6	0,0010	7	14
	0,004	0,001	0,003	0,0007	3	0,006	0,001	0,012	0,0006	0,0006	0,003	2	0,0005	2	7

	As	N	Са	Sb	В	Mg
Lfd. Nr.	μg/g	μg/g	μg/g	μg/g	μg/g	μg/g
1	87	50	8,3	27	1,3	2,9
2	87	59	8,7	32	1,4	3,8
3	89	64	8,8	46	3,0	4,8
4	91	70	9,5	48	4,8	
5	94	72	9,9	52	5,0	
6	96	75	10,9		8,2	
7	104		13,4			
8						
М	93	65	9,9	41	4,0	3,8
S _M	7	10	1,8	11	2,7	1,0
<i>S</i> i	2	10	1,6	4	0,7	0,6

Die Labormittelwerte wurden statistisch untersucht, um Ausreißer zu eliminieren. Wenn in der Tabelle ein '---' erscheint, bedeutet dies, dass ein Ausreißer ausgeschlossen wurde. Ein Datensatz besteht aus mindestens 2 Einzelwerten eines Labors. Angaben in kursiver Schrift sind nicht-zertifizierte Werte zur Information.

M: Mittelwert der Laborwerte s_M : Standardabweichung der Labormittelwerte

s̄_i: gemittelte Standardabweichung der Wiederholbarkeit (Quadratwurzel aus dem Mittelwert der Laborvarianzen)

TAZ-012 Seite 3 von 6

In der Charakterisierungsstudie angewandte Analysenmethoden

Element	Lfd. Nr.	Methoden
С	1, 3	Glimmentladungs - optische Emissionsspektrometrie
	2, 4, 6, 8, 9	Funkenanregung - optische Emissionsspektrometrie
	5, 10	Verbrennung
	7	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
Si	1, 2, 9	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	3, 4, 6, 7, 8	Funkenanregung - optische Emissionsspektrometrie
	5	Glimmentladungs - optische Emissionsspektrometrie
Mn	1, 3, 5, 7, 9	Funkenanregung - optische Emissionsspektrometrie
	2, 10	Glimmentladungs - optische Emissionsspektrometrie
	4, 8	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	6	Röntgenfluoreszenzanalyse
Р	1, 5, 9	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	2, 3, 7, 8, 10	Funkenanregung - optische Emissionsspektrometrie
	4, 6	Glimmentladungs - optische Emissionsspektrometrie
S	1	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	2, 10	Verbrennung
	3, 5	Glimmentladungs - optische Emissionsspektrometrie
	4, 6, 7, 8, 9	Funkenanregung - optische Emissionsspektrometrie
Cr	1	Glimmentladungs - optische Emissionsspektrometrie
	2, 5, 6, 7, 8	Funkenanregung - optische Emissionsspektrometrie
	3, 9	Röntgenfluoreszenzanalyse
	4	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
Мо	1, 6	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	2, 3, 4, 5, 8	Funkenanregung - optische Emissionsspektrometrie
	7	Röntgenfluoreszenzanalyse
	9	Glimmentladungs - optische Emissionsspektrometrie
Ni	1, 4	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	2, 3, 5, 7, 9	Funkenanregung - optische Emissionsspektrometrie
	6	Glimmentladungs - optische Emissionsspektrometrie
	8	Röntgenfluoreszenzanalyse
Al	1	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	2, 4, 5, 6, 7	Funkenanregung - optische Emissionsspektrometrie
	3	Glimmentladungs - optische Emissionsspektrometrie
Со	1, 3, 7	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	2, 4, 5, 6, 8	Funkenanregung - optische Emissionsspektrometrie
	9	Glimmentladungs - optische Emissionsspektrometrie
Cu	1, 2	Röntgenfluoreszenzanalyse
	3, 6, 7, 10, 11	Funkenanregung - optische Emissionsspektrometrie
	4, 8	Glimmentladungs - optische Emissionsspektrometrie
	5, 9, 12	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
Ti	1, 9	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	2	Induktiv gekoppeltes Plasma - Massenspektrometrie

TAZ-012 Seite 4 von 6

In der Charakterisierungsstudie angewandte Analysenmethoden (Fortsetzung von Seite 4)

Element	Lfd. Nr.	Methoden
	3, 4, 5, 7, 8	Funkenanregung - optische Emissionsspektrometrie
	6	Glimmentladungs - optische Emissionsspektrometrie
V	1	Röntgenfluoreszenzanalyse
	2, 5	Glimmentladungs - optische Emissionsspektrometrie
	3, 4	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	6, 8, 9, 10, 11	Funkenanregung - optische Emissionsspektrometrie
	7	Induktiv gekoppeltes Plasma - Massenspektrometrie
W	1	Induktiv gekoppeltes Plasma - Massenspektrometrie
	2, 3, 4, 6	Funkenanregung - optische Emissionsspektrometrie
	5, 7	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
Sn	1	Induktiv gekoppeltes Plasma - Massenspektrometrie
	10	Induktiv gekoppeltes Plasma - Massenspektrometrie
	2, 3	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	4, 6, 7, 8, 9	Funkenanregung - optische Emissionsspektrometrie
	5	Röntgenfluoreszenzanalyse
As	1, 3, 4, 5, 8	Funkenanregung - optische Emissionsspektrometrie
	2, 7	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	6	Induktiv gekoppeltes Plasma - Massenspektrometrie
Ca	1	Glimmentladungs - optische Emissionsspektrometrie
	2, 3, 4, 5, 7	Funkenanregung - optische Emissionsspektrometrie
	6	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
Sb	1, 4, 5	Funkenanregung - optische Emissionsspektrometrie
	2	Induktiv gekoppeltes Plasma - Massenspektrometrie
	3	Röntgenfluoreszenzanalyse
	6	Glimmentladungs - optische Emissionsspektrometrie
В	1, 3, 4, 5	Funkenanregung - optische Emissionsspektrometrie
	2	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	6	Glimmentladungs - optische Emissionsspektrometrie
	7	Induktiv gekoppeltes Plasma - Massenspektrometrie
Ν	1	Glimmentladungs - optische Emissionsspektrometrie
	2, 3, 6	Funkenanregung - optische Emissionsspektrometrie
	4, 5	Trägergasheißextraktion
Mg	1	Induktiv gekoppeltes Plasma - optische Emissionsspektrometrie
	2, 3	Funkenanregung - optische Emissionsspektrometrie
	4	Glimmentladungs - optische Emissionsspektrometrie

TAZ-012 Seite 5 von 6

Akzeptiert als TAZ ZRM am 06.10.2023 Datum dieser Revision 1: 29.05.2024

Thomas Asam, Dipl.-Ing. (FH)

Geschäftsführer

Than Am

de Mits

Moritz Winter, M.Sc.

Projektleiter

TAZ Gesellschaft für Analyse und Meßtechnik mbH Joseph-von-Fraunhofer-Str. 4 86551 Aichach Deutschland

TAZ GmbH Joseph-von-Fraunhofer-Straße 4 86551 Aichach Tel. +49 (0)8205/5184010 info@tazgmbh.de

Tel: +49 (0)8205 518 40 10 Mail: info@tazgmbh.de

Web: tazgmbh.de - referenzproben.com

- Ende des Zertifikats -

TAZ-012 Seite 6 von 6